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Abstract: We present a data-driven, in situ proximal multi-sensor digital soil mapping approach
to develop digital twins for multiple agricultural fields. A novel Digital Soil CoreTM (DSC) Probe
was engineered that contains seven sensors, each of a distinct modality, including sleeve friction, tip
force, dielectric permittivity, electrical resistivity, soil imagery, acoustics, and visible and near-infrared
spectroscopy. The DSC System integrates the DSC Probe, DSC software (v2023.10), and deployment
equipment components to sense soil characteristics at a high vertical spatial resolution (mm scale)
along in situ soil profiles up to a depth of 120 cm in about 60 s. The DSC Probe in situ proximal
data are harmonized into a data cube providing vertical high-density knowledge associated with
physical–chemical–biological soil conditions. In contrast, conventional ex situ soil samples derived
from soil cores, soil pits, or surface samples analyzed using laboratory and other methods are bound
by a substantially coarser spatial resolution and multiple compounding errors. Our objective was
to investigate the effects of the mismatched scale between high-resolution in situ proximal sensor
data and coarser-resolution ex situ soil laboratory measurements to develop soil prediction models.
Our study was conducted in central California soil in almond orchards. We collected DSC sensor
data and spatially co-located soil cores that were sliced into narrow layers for laboratory-based
soil measurements. Partial Least Squares Regression (PLSR) cross-validation was used to compare
the results of testing four data integration methods. Method A reduced the high-resolution sensor
data to discrete values paired with layer-based soil laboratory measurements. Method B used
stochastic distributions of sensor data paired with layer-based soil laboratory measurements. Method
C allocated the same soil analytical data to each one of the high-resolution multi-sensor data within a
soil layer. Method D linked the high-density multi-sensor soil data directly to crop responses (crop
performance and behavior metrics), bypassing costly laboratory soil analysis. Overall, the soil models
derived from Method C outperformed Methods A and B. Soil predictions derived using Method D
were the most cost-effective for directly assessing soil–crop relationships, making this method well
suited for industrial-scale precision agriculture applications.

Keywords: digital twin; digital soil mapping; soil sensors; multi-sensor system; digital soil core;
machine learning; artificial intelligence; soil properties; scale

1. Introduction

The need for cost-effective, rapid, deep, and comprehensive soil health characterization
in support of climate-smart agricultural management, soil carbon accounting, precision
agriculture applications, and digital twins in smart farming is profound [1–3]. Traditional
approaches to characterize soils are laborious, entailing the ex situ collection of soil samples
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in individual horizons/layers or soil coring, soil analytics in the laboratory, and digital soil
mapping and modeling. In situ proximal sensing in the near surface dates to the late 1990s
and early 2000s with Ben-Dor et al. [4], who reported the first instrument of its nature, a soil
penetrometer [5], that was later coupled to a window regulating mechanism that collected
reflected light, enabling one to view the color and structure of the soil profile [6]. Poggio
et al. [7] conducted a laboratory-based evaluation of the optical performance of a soil
penetrometer that included visible and near-infrared (VisNIR) optics, which acknowledged
the contributions of Rooney to the design. Recently, the advent of proximal soil sensor
technology and artificial intelligence (AI) soil predictive modeling has excelled to quantify
soil health properties, especially soil organic carbon [8]. Soil measurements made in the
laboratory under controlled conditions are still considered the “gold” standard in terms of
the accuracy and precision of measurements, with soil sensors calibrated and validated
against these standards. However, the mismatch of the spatial scale and sample support
of laboratory and in situ field sensors is stark and has not been sufficiently addressed in
research investigations. The sample sizes required to support conventional laboratory
analysis often substantially exceed the spatial scale within which soil properties vary.
Proximal sensors are in close proximity to soil samples, with the potential to continuously
characterize the variability of soils along soil profiles [9], while conventional extracted soil
samples used for laboratory-based soil analytics are low in volume, mass, and vertical
resolution. Figure 1 demonstrates the relationship between in situ proximal sensing and
soil sampling for the measurement of soil potassium. The proximal sensor delineates the
profile at a sub-centimeter scale, which represents how potassium is distributed in nature.
However, the laboratory requires 500 g of soil sample, which equates to about a 30 cm
section of a standard core, to run a full laboratory testing panel. Of this 500 g, approximately
50–75 g is utilized for nutrient testing. The result from the lab shows one value (55 ppm),
while the range detected by the proximal sensor varies from 10 ppm to 98 ppm. Which is
more likely to be a true representation of how potassium is distributed in the soil profile?
How to compare the two? Which is the “gold” standard?
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situ soil sample (~500 g soil) collected within a soil layer with a 30 cm depth.

Another shortcoming of ex situ soil sampling is that the in situ co-relation between
soil properties and attributes is disrupted during extraction, which further degrades the
utility of soil information derived from conventional methods and obfuscates the intent of
the survey. For example, when mapping soil and water properties for irrigation manage-
ment at the field scale, understanding the in situ relationship between the grain size and
packing, structure, density, microbial gums, and the depth and thickness of soil horizons
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is critical. By removing a soil sample and performing a laboratory soil texture test, all of
the corresponding contextual soil information is detached, thus degrading the value of
the soil texture data as a predictor of the water-holding capacity. This is typical of each
laboratory testing procedure, whether physical, chemical, or biological. A precise holistic
understanding of soil–crop relationships is best informed by in situ soil testing conducted
where the roots interact with the soil properties.

In addition to the issues with vertical resolution and the loss of sample context,
conventional methods are also at a disadvantage with respect to a lower spatial resolution.
In practice, where what is learned during research is intended to be put to practical use
in agriculture, it is not realistic to obtain and test enough ex situ soil samples to create an
accurate map with the spatial resolution needed to operate currently available variable-rate
nutrient and soil amendment applicators and irrigation technologies. The result is that
ex situ soil information is interpolated and extrapolated and then digitized in ways that
are not recognized or challenged by end-users. The resulting ex situ soil data are highly
subjective and lack spatial and information resolution, and are not suitable for advanced
analytics enabled by a digital twin.

Some of the understudied research questions include (1) whether the approach to
ground-truth in situ field soil sensor data with manually extracted coarser-scale ex situ
soil samples undergoing laboratory soil analysis realizes the full potential of the in situ
proximal sensing of soil properties, and (2) which scaling function performs best to link high-
resolution in situ soil sensor data and coarser resolution ex situ laboratory analytic data.

The most widely studied proximal soil sensors are visible–near-infrared (VNIR) and
mid-infrared (MIR) spectral instruments, which have been used to develop soil spectral li-
braries at global [10,11], regional [12,13], and national scales, for example, in the U.S. [14,15],
Brazil [16], China [17], and Switzerland [18]. The ability to predict soil organic carbon
(SOC) using machine learning (ML) with large-scale spectral libraries in the U.S. has shown
excellent performance using independent validation data. For example, SOC predictions
from VNIR spectra and random forest (RF) modeling achieved a Coefficient of Determi-
nation (R2) of 0.95, a Ratio of Performance to Inter-Quartile (RPIQ) of 0.81 [14], and an
R2 of 0.96 and an RPIQ of 5.18 [19] using rigorous validation assessment for soils in the
conterminous U.S. Similarly compelling results in the validation mode were achieved for
modeling the SOC in the U.S. using VNIR spectra and Convolutional Neural Networks
(CNN-1), with an R2 of 0.83 and RPIQ of 0.81, and even better results using MIR spectra
and CNN-1, with an R2 of 0.98 and RPIQ of 2.37 [15]. Other physical and chemical soil
properties, such as the macro- and micro-nutrients, soil texture, cation exchange capacity
(CEC), and pH have been predicted widely from diffuse reflectance spectral data [14,20–23].
In particular, MIR spectral data have fingerprinting capabilities for soil characteristics and
the elemental content, while VNIR relies on the overtones of chemical bonds in the spectra
(e.g., C–O, C–H, N–H, and O–H) [12].

Bulk density (BD) cannot be directly inferred from spectral reflectance data because
it relies on associations with other soil properties such as the soil texture and SOC. For
example, the BD (measured using clod-only, core-only, and combined clod and core meth-
ods) was predicted using Partial Least Squares Regression (PLSR), Cubist, memory-based
learner (MBL), and RF from MIR data, with an R2 in validation mode ranging between
0.64 (PLSR) and 0.81 (MBL) [24]. Davari et al. [25] found that both the soil BD (R2 = 0.35)
and soil porosity (R2 = 0.16) were poorly predicted using only VNIR spectra, suggesting
that other sensors, such as penetrometers that measure tip and sleeve stress, are needed to
improve the inference capabilities [26,27]. The Soil Condition Analysis System (SCANS)
integrates an ex situ soil core scanning system with multiple sensors, including a γ-ray
attenuation densitometer to measure the BD, digital cameras for soil imaging, and a VNIR
spectrometer [28].

The advantages of spectral soil prediction modeling include that VNIR provides high
sample throughput through the rapid scanning of samples compared to conventional soil
analytics [29,30]. Hyperspectral soil data show significantly higher information content
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than traditional laboratory soil analytics. Proximal soil sensing is non-destructive and
produces no hazardous materials. Another advantage is that, once large spectral libraries
have been built, they can be reused and improved (e.g., applying novel ML algorithms) over
time until they reach model saturation. Review articles of proximal soil sensing technology
unequivocally converge in view that the proximal soil health sensing of individual soil
samples is a mature analytical technique if performed under controlled laboratory condi-
tions using the sieving, grinding, and drying (MIR), and sieving and drying (VNIR), of soil
samples [31–34]. Sieving and drying operations are employed to produce comparability
among laboratory scanned spectra because soil reflectance spectra are also affected by the
particle size [35–39] and surface roughness [40–42], both of which relate to the soil texture.

The emergence of field-based soil spectroscopy using portable or mounted instruments
has marked a shift from laboratory settings to in situ field sensing [43]. Some field stud-
ies showed significant differences between controlled laboratory- and field-based VNIR
applications due to spatially variable environmental conditions. For example, the study
by Hedley et al. [44] used a portable spectroradiometer to predict the topsoil SOC from
field-moist spectra, with a low R2 = 0.39 and Ratio Performance Deviation (RPD) = 1.28,
compared to air-dry spectra, with an R2 = 0.80 and RPD = 2.25, which showed significant
differences due to the effects of soil moisture. The effects of soil moisture on soil spectral
modeling have long been known in the spectral soil community [41,45,46]. According to
Seidel et al.’s empirical data [47] (2022), soil moisture effects are more significant in MIR
than VNIR applications. Methods such as external parameter orthogonalization (EPO),
direct standardization (DS), global moisture modeling (GMM), slope-bias correction (SB),
and selective wavelength modeling (SWM) have been suggested to address the application
of VNIR under field conditions with varying soil moisture contents [19]. In their study,
dry samples were rewetted with different soil moisture contents, demonstrating that EPO,
DS, and GMM account satisfactorily for the effect of moisture in soil spectra. These three
methods improved the prediction of the SOC substantially, with an increase in the R2 from
almost 0 for no correction to over 0.5 and an RPIQ from 0.38 to over 1.7. These findings
suggest that the effect of moisture on the VNIR modeling of the SOC and other soil prop-
erties is removable through post-process corrections applied to the spectral data. Knadel
et al. [48] provided a comprehensive review of mathematical techniques to remove the
moisture effects from the VNIR spectra. However, such approaches are computationally
expensive if applied to spectral field data. Data-driven ML methods offer alternatives to
the removal of soil moisture effects from spectral data by explicitly incorporating moisture
data along with spectral and/or other sensor data into soil prediction models.

One such study was presented by Zhou et al. [23] (2024), who analyzed loess soil
samples to investigate how changes in the soil moisture content impact predictions from
VNIR spectra. Various supervised learning and latent variable methods (PLSR, RF, and
Support Vector Machines) were tested with the first derivative-Genetic algorithm (GA)–RF
method, demonstrating successful predictions of the soil moisture, with an R2 of 0.99 and
Relative Prediction Deviation (RPD) of 16.2. Similarly, Lobell and Asner [49] quantified the
strong influence of moisture on spectral reflectance and absorption features. Tan et al. [50]
critiqued that many studies using soil spectroscopy focused on dried soil samples in the
laboratory under controlled conditions, while techniques to remove the soil moisture
effects from VNIR spectra are time-consuming and counter-productive in the field. In Tan
et al.’s [50] empirical study, soil moisture effects were successfully eliminated from VNIR
spectra to model the soil organic matter (SOM) using Principal Component Analysis (PCA)–
RF coupled with the continuous wavelet transform (CWT). They found that wavelengths
at about 580 nm, 820 nm, and especially the narrow region around 1400 nm are highly
correlated regions to the SOM using wet soil samples. Validation results to predict the
SOM from wet samples based on PCA-RF (R2 = 0.84 and RPD = 2.53) and dry samples
(R2 = 0.86 and RPD = 2.68) were statistically equivalent [50]. These results suggest that
in situ proximal sensing under varying soil moisture conditions combined with ML can



Sensors 2024, 24, 6855 5 of 32

achieve similarly good soil predictions as those derived from controlled conditions in
the laboratory.

ML algorithms have been widely applied in the emerging field of predictive soil
modeling using portable spectroradiometers that characterize soils under field conditions.
Portable VNIR and MIR approaches have shown promising results using the PLSR mod-
eling of soil carbon and other soil health properties when compared to lab-based diffuse
reflectance spectral measurements [27,51–57]. According to Hutengs et al. [55], portable
VNIR and MIR instruments provided accurate models of various soil physicochemical
properties (an R2 between 0.72 and 0.99) that showed some influence by the soil moisture
state (dry vs. field-moist). Validation models for the SOC achieved an R2 of 0.82 (dried,
VNIR), 0.88 (dried, MIR), 0.57 (field-moist, VNIR), and 0.72 (field-moist, MIR). In the study
presented by Semella et al. [56], SOC predictions from both VNIR and MIR spectra collected
with portable spectroradiometers were equally highly reproducible on average, with a
slightly higher robustness in the MIR. The results showed that the contributions of spectral
variation (∆RMSE < 0.4 g kg−1; RMSE: Root Mean Square Error) and the reference SOC
uncertainty (∆RMSE < 0.3 g kg−1) to spectral modeling errors were small compared to the
difference between the VNIR and MIR spectral ranges (∆RMSE~1.4 g kg−1 in favor of MIR).
Studies with handheld single-sensor instruments, such as the ASD Labspec 2500 [51], Quick
Carbon Reflectometer [58], Agilent 4300 handheld FTIR [53], AgriSpec [57] (Sharififar et al.,
2019), NeoSpectra [27,57,59], NanoQuest [60], and Hamamatsu C12880MA [27], demon-
strate the capabilities to sense the SOC and other soil properties, though with variable
results based on the sensors’ capabilities. One major disadvantage is that these portable
instruments require soil samples to be extracted to be sensed in the field and they do not
allow in situ continuous sensing along soil profiles. These kinds of quasi-in situ VNIR
sensing systems require soil cores to be first extracted and then scanned using a field
spectroradiometer [44]. Tractor- or truck-mounted sensors cover the full VNIR spectral
range, but due to the vehicle movement during data collection, often the uncertainty in soil
predictions can be substantial [27,61]. Soil sensors that do not possess in situ penetration
capabilities severely limit the characterization of soil spatial variability, especially in crops
with extensive rooting systems.

A comprehensive characterization of a suite of soil health and other profile properties
and attributes in agriculture applicable to a wide variety of cropping systems (e.g., spe-
cialty crops, row crops, and different crop species) calls for multiple sensors to be used
in combination that are fully integrated into a soil sensing system. Often, single-sensor
instruments are applied separately to map specific soil characteristics, and then the data are
fused later during the data processing and modeling phase [62]. For example, individual
sensors, such as apparent electrical conductivity (ECa) to map the soil salinity [63], portable
X-ray fluorescence (pXRF) spectrometry for elemental and soil fertility characterization [64],
and high-capacity tensiometers, microwave-based approaches, and others for soil moisture
sensing, provide specialized applications. Schmidinger et al. [65] compared the model
performance of six independent in situ proximal soil sensors, one remote sensor (Sentinel-2),
and all of the sensor data fused together to predict the SOM, phosphorus (P), magnesium
(Mg), potassium (K), moisture, and pH with multiple ML algorithms. Five out of six soil
properties achieved an R2 ≥ 0.80, often with various combinations of individual sensors,
while, unsurprisingly, the improvement derived from fusing an increasing number of sen-
sors was subject to diminishing returns. Similar testing of soil model performance to assess
the effectivity of multiple single-sensor combinations (less than a max. of four) and fused
sensor data were presented by Chen et al. [66] (2021), Tavares et al. [67], and Xu et al. [68].
Vasques et al. [69] applied multiple sensors (the ECa, apparent magnetic susceptibility
meter, gamma-ray spectrometer, water content reflectometer, cone penetrometer, and pXRF)
in a pasture field and found that multiple soil sensor data fused together improved the soil
predictions for all soil properties relative to single sensors. The pXRF data produced the
best predictions for the SOC, clay content, and BD, standing out as the best single sensor
for soil property prediction, whereas the other sensors combined outperformed the pXRF
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sensor for the sum of bases, CEC, and soil volumetric moisture based on independent
validation. These findings suggest that different combinations of sensors are needed to
provide inference on a variety of soil physical and chemical properties.

Although the integration of multiple sensors into a mobile platform has sparked
profound interest in the agronomic and soil science communities, fully integrated systems
are rare and typically limited to a few sensors. An early attempt at a multi-sensor system
for soil physical properties was presented by Yurui et al. [70]. The Veris P4000 multi-sensor
instrument can collect VNIR spectra, ECa, and cone index (CI) penetrometer readings up
to 1 m depth. In Pei’s study in two fields in central Missouri, U.S., the Veris P4000 achieved
modest results in cross-validation mode, with average R2 values across all soil properties
(the SOC, total nitrogen—TN, soil texture, CEC, Ca, Mg, K, and pH) for the PLSR, neural
network (NN), Regression Trees (RT), and RF of 0.59, 0.46, 0.39, and 0.45, respectively.
While a few properties achieved promising results with the PLSR (e.g., an R2 of 0.81 for
the SOC), some properties showed a weak model fit (an R2 of 0.37 for the sand content). A
multi-sensor robotic platform with a modular sensing box that includes VNIR, a thermal
camera, two visual cameras forming a stereo couple, and an Inertial Measurement Unit
(IMU) that provides navigational data mounted on an autonomous vehicle to generate 3D
ground maps for precision agriculture applications was described by Milella et al. [71].
Other multi-sensor soil systems are static and intended for real-time sensing at only one
specific location. For example, a buried soil probe containing electrochemical sensors in a
hygroscopic membrane to monitor soil nutrient concentrations in real time was combined
with an air probe that collects information regarding environmental conditions and gaseous
emissions (esp. NH3, N2O, and CH4) just above the ground, and smart data loggers
connecting to the Internet of Things (IoT) cloud [72] (Balan et al., 2020). Such static soil
sensor systems lack the mobility to collect data across farms and cropping systems to
optimize climate-smart and practical agricultural management.

In this paper, we present research using an in situ proximal soil sensing system de-
signed and deployed by LandScan, LLC (Davis, CA, USA), that includes a multi-sensor
probe, software, and equipment to deploy (DSC System). The research objectives in-
clude investigating the capabilities of the DSC System to predict various soil health and
management-related properties, as well as directly predicting crop metrics without the use
of ex situ soil samples and laboratory analytics, and the effects of the mismatched scale
between high-resolution in situ proximal sensor data and coarser-resolution ex situ soil lab-
oratory measurements to develop soil and plant prediction models used to create a digital
twin. We critically discuss the limitations of the contemporary paradigm to ground-truth
soil sensor data with laboratory-based ex situ soil measurements and present an alternative
method that focuses on measured soil–crop responses.

Study Area

Data collection for this study was conducted across three almond management blocks
located on commercial ranches in central California (Figure 2). The first ranch is positioned
near the San Joaquin River, southwest of Madera in Madera County, while the remaining
two are in Kern County, southwest of Bakersfield. Detailed descriptions of the location,
size, crops, soils, and climate are found in Table 1. The almond trees were 7 to 12 years
old and irrigated using drip or micro-sprinkler irrigation. The Central Valley of California
has a Mediterranean climate, characterized by hot, dry summers and cool, wet winters.
Trees are planted on linear berms that extend 10 to 20 cm above the lanes. The lanes have
a cover crop in the winter/spring but are typically cut back in mid-summer to facilitate
ground preparation for harvest in late summer. The berms are kept free of cover crops on
these sites.
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Table 1. Study blocks. Soil units sourced from the United States of Department of Agriculture (USDA)
Web Soil Survey, accessed in June 2024.

Block Location Description Samples

KG-18-19

About 20 km southwest of
Madera and less than 1 mi
north of the San Joaquin River
in Madera County, California

A 35.2 ha almond orchard, planted in 2017. Double-line drip
irrigation. Soil map units are El Peco-Dinuba fine sandy
loams and Grangeville sandy loam, with 0–1 percent slopes
(leveled during planting).

78 samples
December 2023

SSR-35-1
About 8 km southwest of
Bakersfield in Kern County,
California

A 25.5 ha almond orchard, planted in 2012. Micro-sprinkler
irrigation. Soil map units are primarily Kimberlina fine sandy
loam with a small section of Granoso loamy sand adjacent to
canal, with 0–2 percent slopes (leveled during planting).

36 samples
October 2023

ST-15

About 18 km southwest of
Bakersfield in Kern County,
California, and about 3 mi
south of SSR-35-1

A 31.2 ha almond orchard, planted in 2016. Double-line drip
irrigation. Soil map units include Garces loam, Kimberlina
fine sandy loam, Millox clay loam, and Tennco fine sandy
loam. The field is split into two sections by a field road. The
western section is adjacent to a canal.

34 samples
October 2023

The block KG 18-19 (size: 35 ha) is north of the San Joaquin River, while SSR 35-1
(size: 25 ha) and ST-15 (size: 31 ha) are located adjacent to canals. ST-15 previously had a
drainage or canal running through it and was previously part of the adjacent cattle ranch.
ST-15 is split into two parts by a gravel ranch road.

2. Materials and Methods
2.1. Digital Soil Core System and Probe

Our research employed the DSC System, which includes the integrated components
of the DSC Probe (Figure 3), software, and equipment to deploy. The DSC Probe is a
multi-sensor probe that includes (1) tip stress, (2) sleeve friction, (3) dielectric permittivity,
(4) electrical conductivity, (5) a microelectromechanical system (MEMS) microphone, (6) a
video microscope, and (7) visible and near-infrared (VNIR) diffuse reflectance spectrom-
eters [73]. The DSC Probe can penetrate the soil up to 120 cm in this configuration. Tip
and sleeve stress measurements are indicators of the soil strength [74], which is spatially
and temporally variable. The DSC Probe incorporates a 60-degree, 1-inch diameter conical
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tip [5]. A pair of steel electrodes in the tip of the DSC Probe were separated by an insulating
element and used to measure the volumetric water content and electrical conductivity
via rapidly multiplexed measurements of the direct current (DC) electrical resistance and
apparent dielectric permittivity at a frequency above 50 MHz, from which the water content
was inferred. The dielectric permittivity of the soil was recovered via calibration to known
standards and converted to the volumetric water content (VWC) using well-established
relationships [75–77]. An embedded microelectromechanical system (MEMS) digital mi-
crophone recorded the acoustic emissions produced by the penetration process, as soil
particles were scraped and rearranged due to penetration displacement [78,79]. The sound
was affected by the soil texture and structure, compaction state, and water content, making
the microphone sensitive to several important soil parameters. Two sapphire windows
permitted video microscope imagery and VNIR DRS, with optics and lighting optimized
for subsurface microscopy at a penetration speed. Uniform, consistent illumination was
synchronized to the video frame rate. The videos were captured using the Advanced Video
Coding (AVC), H.264, video compression standard. The video was captured in H.264,
Red–Green–Blue (RGB) frames and extracted for processing. The microscope produces
RGB color imagery (2.3 × 1.2 mm) with a 1-µm pixel resolution and a spatial density of
about 15 images per cm, with a 50% overlap of adjacent images. The optical resolution of 3
µm was confirmed using a MIL-STD-150A resolution calculator (#38-257, Edmund Optics,
Barrington, NJ, USA). VNIR DRS data were acquired at a rate of four scans per second, with
a push rate of 2 cm/s, resulting in approximately 2 VNIR readings per cm. The downhole
optical design and proprietary optical fiber bundle of the VNIR system was optimized for a
maximum signal-to-noise ratio (SNR) in the spectra collected by the spectrometers located
above ground and external to the DSC Probe from Ocean Optics (Orlando, FL, USA, QEPro
and NIRQuest) in a custom enclosure engineered for environmental protection and precise
thermal control. The QEPro has a spectral range of 350 to 950 nm and full-width half-max
(FWHM) optical resolution of 1.2–6.87 nm. The NIRQuest has a spectral range of 900 to
2500 nm and a full-width half-max (FWHM) optical resolution of 6.3 nm. The DSC System
includes a string potentiometer used to register the DSC Probe depth during penetration.
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Figure 3. Photo of the Digital Soil Core Probe.

In contrast to conventional core retrieval and laboratory analysis, the DSC Probe data
collection method preserves the vertical spatial variability, differentiates thin layering,
and accurately references the soil parameters to the depth. Other advantages that in situ
proximal sensing can provide over the traditional ex situ soil coring, compositing, and
homogenization of soil samples include, for example, observing the in situ distribution
of soil water within the structural arrangement revealed and the in situ bulk electrical
conductivity rather than that of saturated paste extract.

The integration of multiple independent proximal soil sensors in the DSC Probe
enhances the capacity to capture a comprehensive picture of the soil properties and the
in situ relationships to each other. Each sensor modality offers a unique perspective on
the soil properties, and, when combined, they provide a multifaceted characterization
of the soil profile (example sensor vertical plots are provided in Figure 4 and imagery is
provided in Figure 5). An important consideration in the development of the DSC System
is the interplay of the orthogonality of the sensor modalities, and the degrees of freedom
in the sensor data and soil parameters of interest. Accounting for the dimensionality of
information within individual sensors, such as video, audio, and spectrometry, the DSC
System provides over 1200 sensor output values for each cm of soil it encounters.
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Figure 4. Example of the real-time data acquisition DSC software plots of data features derived from
the multiple sensors of the DSC Probe in a single profile collected in about 60 s. Plots are oriented so
that the features are aligned by depth on the y-axis. Calibrated feature units are scaled to fit the user
interface and are not displayed in this example.
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Figure 5. In situ imagery obtained using the DSC, showing (from top left clockwise) microbial gums,
roots, mycorrhizae, meso-fauna. Depth from the ground surface is listed in the upper-left corner of
each image. A scale bar is in the lower left corner of each image.
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2.1.1. Soil Data Collection

The in situ and ex situ soil data collection took place between October and December
2023. Figure 6 shows the DSC System in operation in an almond orchard.
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Figure 6. Digital Soil Core System, including the DSC probe, software, and deployment equipment.

DSC sampling locations and collocated soil cores were targeted using c-means clus-
tering [79] applied to the EM data. The c-means clustering algorithm was used to find six
clusters and to identify one DSC target location per cluster. Additional DSC observations
were obtained for commercial mapping purposes but were not included in this study.

Both DSC sensor measurement profiles and physical soil cores were obtained in tripli-
cate at each target location. All were acquired from within an area measuring approximately
1-m-by-1-m at each target location (Figure 7), between the center and the shoulder of the
berm on the tree-row berm between two almond trees.

Each DSC Probe measurement profile extended to about 1.2 m below ground, except
for the video and spectrometer data, as there was a ~20 cm offset from the tip of the probe
to the video and spectrometer window. So, all of the sensors’ data had measurements up to
1 m in depth, which is a widely used depth of investigation in agricultural studies using a
penetrometer system [16,80]. Although the topsoil layer (0–30 cm) is the most common and
widely used for soil investigations in agriculture, a 1 m depth is considered the root zone
depth, which is very useful for long-term soil health assessments and for understanding
water infiltration and subsoil conditions, especially in semi-arid and arid regions [81–83].
To assure the highest accuracy of the spectral reflectance data, free of instrument thermal
drift and other factors, the DSC System automatically performed a series of reference
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dark current scans at the terminus of every digital profile. With the sapphire window
embedded more than 1 m deep in the ground, free from any possibility of ambient light, the
illumination source was shuttered, and a dark current reference measurement was obtained.
The conversion of the raw spectral scan data to the reflectance spectra considered the
nearest-in-time dark current reference scan along with the nearest-in-time white reference
scan obtained by covering the sapphire window with a Spectralon® diffuse reflectance
standard (Edmund Optics Stock #54-302, Barrington, NJ, USA) and triggering the control
software to acquire a series of reference reflectance scans. The processing of the DSC sensor
data is described later.
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Figure 7. Diagram of the sampling layout. Three in situ DSC System digital profiles and three ex
situ soil cores were taken within a 1 m-by-1 m area, designating a sampling site. Cores and DSC
digital profiles were at least 30 cm from each other. Samples were taken at 10-cm depth intervals at
multiple corresponding depths from 3 cores and combined to make 1 composite laboratory sample
that was the equivalent of at least 500 g (or the volumetric equivalent, which equates to at least
10-cm × 3 cores).

Electromagnetic induction (EM) data were collected along the rows in the almond
orchards to help understand the soil variability patterns with a Dualem-1HS (2 dis-
tances × 2 orientations), giving 4 channels of apparent electromagnetic conductivity to
4 depths of exploration (30, 50, 80, and 160 cm). The EM was driven down in each row of
the mapped orchards. A Real-Time Kinematic (RTK) GPS was used for the georeferencing
of the EM data. The data were then processed on-the-fly by using LandScan data collection
software to remove the physical and temporal offsets between the GPS and EM, and the
vertical offset between the GPS and the ground. The results were filtered using a windowed
standard deviation filter and interpolated to rasters using a thin-plate spline algorithm
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(the Minimum Curvature interpolation algorithm in the Datum Workstation, a geospatial
analysis system formally known as TNTmips, LandScan, 2023).

Physical cores were obtained using a 122-cm (48-in) core barrel, with plastic liners
having an inner diameter of 41 mm (1.6 in). The soil cores from each location were aligned
in a tray, starting at the top and extracted from the plastic tube. Any obvious horizon
breaks in the soil were aligned between the cores. The cores were then broken into 10-cm
(6-in) horizons across all three cores. Soil that appeared consistent for each horizon (with a
volumetric equivalent of at least ~500 g) was bagged for the lab analysis, with 1 bag per
horizon across 3 cores. Three cores were used to keep the horizon thickness small while
providing a sufficient sample volume to the lab. Samples beyond 110 cm (42 in) were not
sent to the lab. Soil samples were labeled with DSC push identification numbers (IDs) so
that they could be matched to the DSC sensor data for training.

In total, 60 soil cores and 60 DSC digital profiles were collected within the whole
study area. Refer to Table 1 for the number of soil samples submitted by study area.
Approximately 6–8 sampling depths were selected from each ex situ soil core location and
sent to a commercial laboratory (Dellavalle Laboratory Inc., Fresno, CA, USA) for analysis.
Soil analytical measurements included the organic matter (OM, loss on ignition), particle
size (sand, silt, and clay measured by the hydrometer method), and a complete soil fertility
package. Out of the measurements in the soil fertility package, boron (B), calcium (Ca),
copper (Cu), zinc (Zn), and the pH were evaluated in this study. References to the laboratory
methods used are included in Table 2. Note that nitrogen (N) was excluded because the
concentrations at each site were very low, with no data distribution to measure against.

Table 2. Soil analytical measurements performed on the samples in this study. See the NAPT manual
for detailed method descriptions (NAPT, 2013).

Property Abbrev. NAPT Method Units Method Comment

Organic Matter OM S9.20 % Loss on ignition
Sand Sand S14.10 % Hydrometer
Silt Silt S14.10 % Hydrometer

Clay Clay S14.10 % Hydrometer
Boron B S1.50 mg/L Saturated paste

Calcium Ca S5.10 mg/kg AA extraction
Copper Cu S6.10 mg/kg DTPA extraction

Zinc Zn S6.10 mg/kg DTPA extraction
pH pH S1.10 pH units Saturated paste

2.1.2. Crop Data Collection

For this study, the almond crop vegetation was characterized utilizing the Digital
Vegetation Signature TM (DVS) technology developed by LandScan [84]. Each site was
flown mid-season for the study with a DGI Mavic M3M multispectral unmanned arial
vehicle (UAV) at an altitude of 120 m. The UAV has an RGB camera, a multispectral camera,
and a built-in GPS. The imagery was processed using the Rig Camera Alignment tool in the
Datum Workstation. A spectral calibration was performed against ground control targets
prior to mosaicking in the Datum Workstation, which was then used to produce the final
orthorectified mosaics. The mosaics were processed into a vegetation vigor index (VVI),
a pigmentation index (PI), and numerous other indices using proprietary algorithms in
the Datum Workstation. The richness of the combination of both spectral and spatial data
reveals many new features in and about the data that provide valuable input to future
analytical processes and integration into the LandScan Digital Twin for Agriculture [85].

In addition to the orthorectified imagery, the orthorectification process also resulted in
a digital surface model (DSM). The digital surface model was used in conjunction with a
digital terrain model (DTM), acquired from the U.S. Geological Survey (USGS) National
Elevation Dataset program, along with a vegetation raster to create a vegetation height
raster. The vegetation height raster was used to determine the location of each tree in each
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orchard block, give them an identifier, and establish various canopy masks. One example
is that, for each pixel in the canopy mask, the height was multiplied by the VVI and then
summed to form a total Crop Productivity Index (CPI). This approximates the canopy
volume and density, or the total canopy biomass (e.g., volume × density should equal
mass), which relates to the fractional amount of photosynthetically active radiation (fPAR)
that can be absorbed by each tree. In theory, an almond tree’s productive capacity is limited
by the fPAR [86]. The DVS data collection process resulted in a finite number of ‘named’
indices, but also produced many new data features and relationships that empowered
deeper learning opportunities for advanced analytics (Figure 8). Many of these features and
relationships were integrated into the digital twin for exploratory and discovery purposes
as additional agronomic metrics became available. These data enable a wide range of
opportunities to advance and improve on the approach taken in Method D in this study.
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Figure 8. DVS data from the same flight shows how different crop metrics produce different patterns
indicating unique spatial information. The top left panel shows a zoomed in view of Vegetation
Index A, clipped to the tree canopy and overlain on the natural color image. The colors of Vegetation
Indices A and B, Canopy Radius, and Canopy Volume show relative values using a spectral color
ramp with red as the lowest values and blue as the highest values.

2.2. Data Pre-Processing and Harmonization

The multi-sensor data that were collected with the DSC System were screened to
identify outliers, noise, and missing data as part of the quality assurance procedures in
LandScan’s DSC data collection software. Data collected from all three profiles were then
merged spatially to obtain one representative digital profile to integrate with the soil
properties and crop responses for modeling purposes.
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2.3. Spectral Data Processing

Using reference standards and dark current measurements, as described above, spec-
tral reflectance from the DSC Probe was first computed. In this work, reflectance spectra
were converted to absorbance spectra before applying Standard Normal Variate (SNV)
Transformation and Savitzky–Golay (SG) filtering [87]. The SNV minimizes multiplicative
effects such as baseline shifts and light scattering in spectroscopic data [88]. SG filtering
was applied to remove noise and improve the signal-to-noise ratio of the spectral data while
preserving the spectral features. For this purpose, 1st differential order and 2nd polynomial
order with 11 window sizes were used. Spectral pre-processing was performed using the
prospectr package in R, version 0.2.7 (https://CRAN.R-project.org/package=prospectr,
(accessed on 1 January 2024).

2.4. Processing of Digital Soil Images

Image color metrics, the mean hue, value, and saturation (HSV), were extracted
from each DSC Probe microscope image, as well the succolarity, a metric of the image
structure (de Melo et al., 2008), for consideration in the analysis. Of these image metrics, the
succolarity curve difference, color saturation, color hue and color value were found to have
significance in the final ML model. Succolarity was originally developed to measure the
flow of water through canal systems from satellite images [89], with additional flow-related
applications suggested by de Melo and Conci [90]. LandScan applies succolarity algorithms
to quantify the potential for percolation flow through porous media in an image in the
analytics software. The determination of the succolarity begins with the binary masking
of the image based on a threshold value below which a pixel is considered to represent a
void (the pore space) and above which a pixel is considered to represent a structure (the
soil matrix). The binary image is then flooded with a theoretical ‘fluid’ from each of the
four edges of the image boundary, and the proportion of the total image penetrated by
the fluid from each direction of flooding is computed. The four values are then averaged
into a single succolarity value. This approach to computing the succolarity, by Leavitt et al.
(2021) [91], approximates the methods explained in de Melo and de Melo and Conci [89,90].
Since the succolarity value thus computed is a function of the threshold chosen for the
binary masking operation, we generated multiple values of the succolarity as a function of
the threshold value chosen, which comprise a succolarity curve. This curve tends to exhibit
a sigmoidal shape, and the metric we call the succolarity curve difference is the normalized
difference in the image masking thresholds between the start and end of the rise in the
succolarity curve [91].

2.5. Processing of Audio Data

Audio data from the MEMS microphone was recorded in Waveform Audio Format
(WAV) for storage. The WAV file was processed in Python by converting it to a numpy
array and running a 3-kHz high-pass Fourier transform filter, followed by binning into
five bins of a 4-kHz bandwidth, a sound pressure level for the band, and the total sound
pressure level.

2.6. Processing of Other Sensor Data

All DSC System sensor-derived data were harmonized to co-registered 1-cm depth
increments in the LandScan DSC processing software. The outputs of all DSC Probe sensors
and the DSC System string potentiometer were used to register the DSC Probe depth during
penetration, and are each associated with a time stamp during the data acquisition. Because
the sensors and their contact with the soil each occupy a different position along the DSC
Probe as it advances through the vertical profile, each increment of soil is encountered by
a different sensor at a slightly different time. To co-register the readings from all of the
sensors with respect to the depth, given that slight variations in the penetration speed
may occur during the acquisition of a sensor profile, each time series of sensor readings
was first independently indexed to the depth and then re-sampled relative to a common

https://CRAN.R-project.org/package=prospectr
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index of equally spaced depth intervals, such as every 1-cm. Depth co-registration was
achieved by applying a sensor-specific depth offset to each sensor in the probe based
on its relative position in the DSC Probe, then computing the depth each sensor was at
when each of its readings were recorded, then re-sampling the readings from each sensor
independently using cubic spline interpolation to conform to a uniformly spaced set of
depth values distributed over the depth of the profile with a depth referenced to zero depth
at the ground surface.

2.7. Data Feature Selection

The Boruta feature selection algorithm was applied to reduce the dimensionality of
the massive data cube of the sensor data by identifying the most relevant sensor output
for predicting the soil properties (Methods A, B, and C) and crop responses (Method D).
It is one of the widely used variable selection methods in soil spectroscopy to deal with
the multi-collinearity of data [92–94]. Boruta trains an RF model using a combined dataset
of original and shuffled features, and evaluates the variable importance (Z score) for each
predictor. Then, it checks whether a real predictor has a higher importance (RMSE) than
the best of its shadow predictors to decide on the important and unimportant features. In
this study, all of the high-resolution (1 cm) sensor data were used as features data in the
RF classifier from the Scikit-Learn library in Python to select the important features for
individual soil properties and crop responses [95].

2.8. Comparison of Training Methods

Four different methods were used to assess the model performance of the soil health
and management properties. Modeling was performed with the PLSR using leave-one-out
cross-validation [96]. The goal was to determine the best method of assessment between
Methods A, B, and C as compared to the laboratory, and then use that method to compare
to Method D in predicting the crop response (Figure 9).

Method A reduced the high-resolution DSC Probe sensor data to discrete values paired
with layer-based soil laboratory measurements. All of the high-resolution (1-cm) sensor
data were averaged to match the length of the segments of the ex situ soil cores sent to
the laboratory for analysis. In essence, for each laboratory measurement, one array of
DSC Probe sensor data was used in the calibration models. We used the leave-one-out
cross-validation method and PLSR on the sensor and soil analytical data from each of the
15-cm layer increments for all cores.

Method B used stochastic distributions of the DSC Probe sensor data paired with
layer-based ex situ soil laboratory measurements. Here, the stochastic distributions of all
DSC Probe sensor data in the model were used for the PLSR modeling. In this method,
soil analytical laboratory data were matched with the minimum, maximum, standard
deviation, and mean sensor data associated within a 15-cm layer. For the validation, the
arrays of the minimum, maximum, standard deviation, and mean DSC Probe sensor data
for the corresponding soil analytical laboratory samples were used in the leave-one-out
cross-validation.

Method C allocated the same soil analytical laboratory data to each one of the high-
resolution multi-sensor data within a layer. PLSR models used all of the high-resolution
(1-cm) DSC System data corresponding to the soil analytical laboratory measurements.
Since the laboratory measurements were only available for each layer, the same laboratory
data values were matched with all of the corresponding high-resolution DSC System data.
For the validation, however, we ensured that, for each laboratory sample left out during
the cross-validation, every high-resolution DSC System data increment corresponding to
the sample that was left out was also left out. The predicted soil properties were averaged
for each 15-cm layer.

Method D linked the high-density in situ DSC System data directly to the DVS crop
responses (the crop performance and behavior metrics), bypassing costly laboratory soil
analysis. In this approach, the DVS crop responses, such as the Crop Productivity Index
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(CPI), canopy area, and canopy volume, were directly predicted from the DSC System to
avoid the laboratory measurements of the soil properties. Since crop responses are single
measurements of each location, the optimum depth for aggregating the sensor data was
determined. A few different soil depth intervals (0–20, 0–30, and 0–60-cm) were considered
to find out the optimum depth of the DSC System data that predicted the crop response with
comparatively higher accuracies. Finally, based on the soil health and nutrient management
opportunities in the almond trees, the 0–30 cm depth was considered for the analysis. The
same crop response was matched with the array of high-resolution (1-cm) DSC System data
for training and validating purposes. Then, the predicted crop responses were averaged
and compared with the observed DVS CPI, canopy areas, and canopy volumes.
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analytical data (Methods A, B, and C), and the DSC System data and DVS crop data (Method D).
Method C was chosen to compare to Method D for modeling the direct crop responses.

2.9. Modeling Approach

PLSR modeling has been a workhorse in digital soil mapping and one of the most
robust machine learning methods [97,98]. The PLSR with the leave-one-out cross-validation
approach was used to estimate the soil properties (Methods A, B, and C) and crop responses
(Method D). The important features of each soil property were used to train the individual
models to estimate that property. All of the samples from the individual fields were used
for training the calibration model, except one sample that was used for validating the
calibration model. The number of components (n-component) used to obtain the lowest
RMSE between the measured and estimated soil properties and crop responses in the
training model was used for validation purposes. The n-components provide the fitting
between inputs and outputs. The more n-components are used, the more complex are
the relations between the input and output variables that can be modeled. Modeling
was performed using the Python programming language with “PLSRegression” from the
scikit-learn 1.2.1 package. For evaluating the performances of all four methods, the R2,
RMSE, RPIQ, and bias of the modeling were used.
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3. Results
3.1. Feature Selections for Modeling

Before training the predictive models for the estimation of the soil properties, the
Boruta feature selection algorithm was applied to over 1200 features per cm in the DSC
System dataset to obtain the importance of the sensor data that will be used in the models.
The top 20 important features of soil properties and crop responses are shown in Figure 10
for zinc (Zn) and Figure 11 for the CPI. The other Boruta graphs can be found in Appendix A.
For both the soil properties and crop responses, all of the features that had a Z score of
more than the maximum shadow value were used for the predictions. The range of features
used in the soil property predictions in this study varied from 36 to 83.
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For almost all soil properties, the DSC Probe sleeve friction, penetration resistance,
friction ratio, and 1600–2000 nm wavelengths from the VNIR spectra were found to be the
most important features. From the whole VNIR spectral range, the near-infrared (NIR)
wavelengths seemed to be important for all of the soil properties except for Ca.

For the crop responses, the color (hue), color (saturation), color (value), soil moisture,
penetration resistance, succolarity curve difference (SCD), electrical resistance, macro-
porosity, sleeve friction, and friction ratio were the important features, along with several
bands from the VNIR spectra. Similar to feature importance for the soil properties, the NIR
region had more important features compared to the visible region of the spectra for the
crop response.

3.2. Predictive Accuracy of Soil Properties Modeling Methods

This study compared the prediction capabilities of three different methods for model-
ing various soil properties (OM, sand, clay, silt, B, Ca, Cu, Zn, and the pH) using DSC digital
soil profiles. The results for the R2 and RPIQ are summarized by property in Figure 12, and
more detail on the R2, RMSE, bias, and RPIQ per study location and property are reported
in Appendix C.
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Figure 12. Mean R2 (left) and mean RPIQ (right) for each method for each soil property summarized
across the study sites.

Method C had the highest R2, the lowest RMSE, and the highest RPIQ across all nine
soil properties at all three sites. It also had the highest mean R2, lowest mean RMSE,
and highest mean RPIQ across the three sites for all nine soil properties, indicating that
Method C leads to more accurate and robust results than the other two methods. When
the high-resolution (1-cm) sensor data were averaged to correspond with the length of the
soil sample segments analyzed in the laboratory for determining the soil properties, the
correlation between the sensor data and lab results decreased due to the averaging process.
So, Method C performed much better than Method A. Method B only slightly outperformed
Method A for some properties (OM, sand, clay, silt, and the pH), but not all properties (B,
Ca, Cu, and Zn), as it included additional stochastic distributions in the DSC sensor data
(the minimum, maximum, standard deviation, and mean). But the prediction accuracies
of Method C were still better than Method B, as this method was able to train the model
with sufficient variation in the DSC sensor data that correlated with the corresponding lab
measurements of different soil properties.
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3.3. In Situ DSC System to Ex Situ Laboratory Properties to DVS Digital Crop Performance vs.
DSC System to DVS Digital Crop Performance

We compared the performance of two models that predict crop performance from in
situ and ex situ soil data. In the first approach, we used the best-performing method for
predicting the soil properties, Method C, and predicted the soil properties, and then used
the soil properties to predict the CPI, canopy area, and canopy volume as measured by a
UAV across all three sites.

In the second approach, we directly predicted the CPI, canopy area, and canopy
volume based on the in situ DSC System data directly, without predicting the ex situ
laboratory soil property values (Method D). For the CPI, Method D had an R2 between
0.72 and 0.75, and an RPIQ between 1.13 and 1.64 (Table 3), whereas the prediction of the
CPI using Method C had an R2 between 0.54 and 0.67, and an RPIQ between 0.63 and 0.85.
Method D had a higher R2 and a lower RMSE than Method C, indicating that the in situ
DSC System data (input data) to digital crop response models show a higher accuracy than
a more complex approach that sequentially models the in situ DSC System data (input
data) → soil properties → crop response models.

Table 3. Model evaluation metrics for all crop responses (Methods C and D) directly from the DSC
System variables as inputs into the PLSR model.

Method C

CPI Canopy Area (m2) Canopy Volume (m3)

Fields R2 RMSE Bias RPIQ R2 RMSE Bias RPIQ R2 RMSE Bias RPIQ

St-15 0.67 6.34 −0.07 0.63 0.67 4.79 −0.15 0.58 0.68 14.56 −0.06 0.7
SSR-35-1 0.66 20.97 −0.47 0.75 0.58 3.73 0.02 0.65 0.63 25.35 −0.16 0.81
KG-18-19 0.54 10.32 −0.01 0.85 0.44 2.13 0 0.58 0.48 15.74 −0.06 0.68

Method D

CPI Canopy Area (m2) Canopy Volume (m3)

Fields R2 RMSE Bias Fields R2 RMSE Bias Fields R2 RMSE Bias Fields

St-15 0.75 5.09 −0.09 1.13 0.76 3.65 −0.18 1.03 0.76 11.51 −0.19 1.16

SSR-35-1 0.74 17.93 −0.41 1.27 0.72 2.94 0.01 1.06 0.73 21.2 −0.15 1.21

KG-18-19 0.72 8.15 −0.08 1.64 0.65 1.72 −0.01 1.33 0.70 12.23 −0.11 1.55

4. Discussion

The results show that the sensor data collected from the in situ DSC System has
the potential for estimating the soil properties and crop responses with the support of
chemometrics modeling. All three methods (Methods A, B, and C) used in this study
showed some correlation between the DSC System data and various soil properties, but
Method C exhibited the highest prediction accuracies compared to the other methods.
The RPIQ for Method C ranged between 1.66 (Zn) and 2.94 (pH), which are compelling
results for soil predictions using the in situ DSC System data. The R2 for the soil properties
(Method C) ranged from 0.61 (Cu) up to 0.79 (pH), and 0.73 (OM), suggesting improved
results compared to other proximal soil sensor applications. For example, models to predict
the SOC stock using field VNIR spectral data in a study in France achieved an R2 between
0.52 and 0.86, and an RPIQ between 1.61 and 4.49, in validation mode [51]. On experimental
plots in Canadian provinces with a humid soil moisture regime, the SOC concentrations
modeled by VNIR spectra achieved an R2 of 0.54 (MIR) and an R2 of 0.49 (VNIR) [52].
In a study in Germany, the topsoil SOC (%) predictions (validation mode) using a Veris
full-range VNIR device and PLSR modeling showed a modest R2 (0.55) and RPIQ (2.05),
the Hamamatsu sensor showed poor performance, with an R2 of 0.29 and an RPIQ of 1.67,
while the NeoSpectra results were slightly better, with an R2 of 0.48 and an RPIQ of 2.00 [27].
Many soil sensor applications focus only on the predictions of the SOC or OM, while the
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DSC System presented in this study has a much broader range to model a suite of different
soil properties.

One of the major advantages of the DSC System is the high resolution (<1 cm) of data
acquisition from all of the sensors. In Method A, the mean of all 1-cm data in a horizon was
used to train and validate the model. For Method B, instead of only using the mean data,
the minimum, maximum, standard deviation, and mean of all sensor data in a soil layer
were used. However, in Method C, the full potential of the high-resolution DSC System
data was used, which allowed for the training of the model in retaining the variation in
the sensor data along the soil profiles. The higher prediction accuracies from Method C
for all soil properties indicate the importance of recording high-resolution sensor data for
accurate soil predictions.

From the Boruta feature selection (Figures 10 and 11; Appendix A), it was observed that
most of the important features were obtained from the VNIR spectral ranges, specifically
for the soil textures (clay, silt, and sand), OM, and pH. The prediction accuracies for these
properties were better compared to the other soil properties estimated using the DSC
System. Other DSC Probe data, such as the sleeve friction, penetration force, friction ratio,
and color saturation, were the most important features, as these appeared in most of the
Boruta important feature plots. Several features, such as the succolarity curve difference,
electrical resistance, macro-porosity, and soil moisture, were also found to be important
for the estimation of the pH and Zn. Most of the important features were found from the
VNIR spectral ranges for the nutrients, except Zn. For the crop responses, all of the color
properties (hue, saturation, and value), the penetration resistance, the sleeve friction, the
friction ratio, the soil moisture, and the micro-porosity were found to be the most important
features, followed by the VNIR spectra.

It is practically not possible to obtain an objective, spatially accurate map if ex situ
soil sampling is utilized on large farming operations (large fields and ranches). Conven-
tional wet chemistry analyses involve extracting soil cores from the field, transporting
samples, and processing samples for laboratory analyses. Maintaining all of these standard
protocols disturbs the original condition of the soil samples [99,100]. This study brings
into serious question the accuracy and applicability of conventional ex situ soil sampling
and laboratory practices for advanced agronomic analytics, and negates the opportunity
to produce a digital twin. Many human (e.g., the handling of soil samples or cores) and
laboratory measurement errors may occur without even acknowledging and quantifying
them explicitly.

This study shows that multi-sensor data collected using the DSC System can rapidly
and objectively estimate multiple soil properties. All of these data were collected in situ
and within a fraction of the time for extracting ex situ soil cores in the fields, and tested
in the laboratory using wet chemistry analyses. Importantly, the DSC System reduced the
time and cost of characterizing the soil profile by reducing or even omitting the expenses
for extracting the ex situ soil cores, processing them, transporting them to commercial soil
testing laboratories, and performing wet chemistry analyses.

Since the density of the DSC System data (<1 cm scale) is substantially higher than
discrete sample extraction in different soil layers by traditional soil analysis in the laboratory,
one may argue that the real “gold” standard are the DSC System data. These sensor data
are collected in close proximity to the soil matrix under actual field conditions, providing
a more direct way to characterize soils than conventional ex situ soil surveys. Therefore,
our study lays the foundation to shift the paradigm of future soil sensor applications to
focus directly on sensor data (e.g., VNIR hyperspectra and porosity derived from digital
micro-images) and crop responses (e.g., canopy density) rather than soil interpretations
(e.g., OM or soil texture).

In this study, DSC System data were successfully used to estimate crop responses in all
three fields (Method D). Bypassing the estimation of the soil properties to estimate the crop
responses directly from the sensor data can potentially offer a more streamlined, objective,
efficient, and accurate approach to precision agriculture. This approach avoids the risk
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of errors associated with the indirect, subjective, and analog measurements of some soil
properties that are not related to the sensor data used for modeling. Directly estimating
the crop responses from the soil sensor data simplifies the data processing pipeline by
eliminating intermediate steps (e.g., soil property predictions that match laboratory mea-
surement methods), leading to faster and more efficient data analysis that can be used for
the precision management of crops.

5. Conclusions

We demonstrated that the DSC System makes robust soil property predictions across
multiple soil properties and study areas in central California using a standard machine
learning approach. The use of the technology in other crops and soil regions, and the
applications of advanced ML algorithms, will further improve sensor-driven soil and crop
modeling approaches that promise substantial future cost savings. The innovative DSC
System facilitates the collection of standardized soil signatures from multiple concurrent
sensing modalities that are spatially co-registered within specific soil profiles.

The integration of the DSC System’s multiple sensing modalities better conditions the
ML model solutions that infer specific soil properties or soil–crop relationships from the
sensor data. This provides a predictive performance that is superior to sensor systems with
fewer modes, such as proximal soil sensors that use diffuse reflectance spectroscopy alone,
or with fewer complements. Each additional sensor modality added confidence. In addition,
integrated multi-sensor data collection from a single device is less error-prone than multiple
single-sensor systems used in combination, which suffer from sensor displacement and
disharmonious sensor resolutions that require more extensive post-processing of data to
correct and more extensive soil sampling to support.

The best method of training a model to predict soil laboratory data was Method C,
which involves treating each centimeter of sensor data as a separate measurement that
is paired with a soil lab measurement. Our results suggest that the machine learning
algorithms can learn more from a high density of sensor data retaining the spatial variation
in soil characteristics along a soil profile compared to aggregating sensor data to a coarser
scale (i.e., collecting a soil sample representing a soil layer that is then analyzed in the
lab) to match conventional soil surveys. The robust model performance underpins the
importance of the vertical scale when characterizing soil properties with multiple sensors,
outperforming the traditional soil surveys. The collection of in situ sensor data in soils is a
prerequisite to create realistic digital soil twins, which cannot be achieved with soil core
extraction and/or through conventional soil laboratory analysis. Thus, we envision a new
technology-informed “gold” standard for digital soil mapping, employing a multi-sensor in
situ proximal sensor suite combined with AI modeling rather than the traditional standard
of discrete soil sample extraction and ex situ analysis.

The best method of training a model to predict crop productivity was Method D
(sensor data → crop responses), which outperformed the more complex approach using
sequential modeling (sensor data → soil properties → crop responses). These results
suggest that direct sensor–crop modeling has fewer errors and higher accuracies than
sensor–soil-crop modeling, which suffers from error propagation, lowering the overall
model performance. From a statistical perspective, clearly the path of sensor data → crop
responses modeling is preferable. The analytical potential of combining a full DSC digital
soil profile as a source of calibration for drones, airplanes, and satellite data is compelling.

While the direct prediction of crop productivity could be useful in determining the
productivity potential, and inform and improve certain agronomic practices, soil property
prediction will still be valuable for describing the below-ground factors that affect that
potential. In turn, this helps to determine what actions a grower can take to improve crop
productivity in their fields, such as the production of variable rate (VR) fertility and soil
amendment maps, or adapting irrigation practices to optimize based on soil variability.

Multi-modal in situ proximal soil sensing systems such as the DSC System present
immense potential to transform soil–crop digital mapping and modeling. We continue to
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acquire DSC System data and corresponding ex situ soil cores for laboratory analysis from
numerous locations in California and other locations (e.g., Australia). All of the samples
with ground-truth data are being used to develop a DSC data library, which is currently
being used to train ML models using data that comprise large variations in soil properties
and conditions (e.g., moisture content, fertility, etc.). Over time, we plan to expand the
DSC data library with ex situ soil samples and measurements across the U.S. and major
agricultural areas world-wide. The goal is to reduce and eventually eliminate the need to
extract soil cores from every field. A sufficient quantity of data will enable the application
of more data-hungry, deep learning models that will use the diverse and extensive dataset
for training the prediction models more efficiently as new soils are added to the library. The
DSC data library will enable the exploitation of the full potential of the DSC System’s speed,
cost, and reproducibility advantages by estimating soil properties and crop responses from
any field in the future using only DSC data. These developments are essential to inform
decision support systems that truly optimize climate-smart agricultural management, high-
accuracy soil carbon accounting, precision agriculture applications, and the installation of
management-unit-level digital twins. Looking forward, this high-spatial-and-information-
density data cube will be the type of input necessary to run quantum computing models for
future agricultural decision support, particularly in intensively managed cropping systems
facing resource constraints.
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Appendix A

Additional Boruta variable importance graphs for both soil properties and crop re-
sponses, showing the top 20 significant DSC features that were used in the model.
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Appendix B

Histograms of all modeled variables.
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Appendix C

Model evaluation metrics for the ‘Ex situ Laboratory vs. In situ DSC System’ for all
soil properties (Methods A to C), with sensor variables as inputs into the PLSR model.

Methods A B C

Field Metrics SSR
35-1 St-15 KG-18-19 Mean SSR

35-1 St-15 KG-18-19 Mean SSR
35-1 St-15 KG-18-19 Mean

OM

R2 0.48 0.54 0.64 0.55 0.48 0.68 0.69 0.62 0.73 0.69 0.76 0.73
RMSE 0.4 0.24 0.18 0.27 0.4 0.2 0.17 0.26 0.25 0.2 0.15 0.20

bias −0.03 0 0 −0.01 −0.03 0.01 0 −0.01 −0.01 0 0 0.00
RPIQ 1.28 1.17 1.72 1.39 1.28 2.12 2.06 1.82 1.91 1.95 2.47 2.11

Sand

R2 0.41 0.5 0.55 0.49 0.41 0.66 0.62 0.56 0.57 0.59 0.73 0.63
RMSE 8.37 9.06 6.47 7.97 8.37 c 7.47 6.15 7.33 7.01 8.41 5.22 6.88

bias 0.14 0.3 −0.13 0.10 0.14 0.21 −0.08 0.09 0.24 −0.37 −0.21 −0.11
RPIQ 1.46 1.25 1.47 1.39 1.46 2.5 1.9 1.95 1.95 2.45 2.37 2.26

Clay

R2 0.43 0.68 0.6 0.57 0.39 0.69 0.66 0.58 0.58 0.72 0.73 0.68
RMSE 3.47 3.49 1.61 2.86 3.59 3.41 1.48 2.83 3.08 3.26 1.36 2.57

bias −0.04 0.03 0.01 0.00 −0.04 −0.24 0.02 −0.09 −0.19 −0.06 0.01 −0.08
RPIQ 1.2 2.07 1.57 1.61 0.98 1.83 1.96 1.59 1.28 2.26 2.5 2.01

Silt

R2 0.59 0.49 0.48 0.52 0.54 0.55 0.55 0.55 0.61 0.6 0.69 0.63
RMSE 6.16 6.62 5.7 6.16 6.64 6.07 5.49 6.07 6.12 5.85 4.53 5.50

bias −0.13 0.21 0.08 0.05 −0.03 −0.16 0.07 −0.04 0.1 0.17 0.18 0.15
RPIQ 1.85 1.7 1.14 1.56 1.75 1.39 1.65 1.60 2.11 1.98 2.29 2.13

B

R2 0.67 0.62 0.25 0.51 0.49 0.53 0.35 0.46 0.81 0.7 0.49 0.67
RMSE 0.16 1.24 0.13 0.51 0.22 1.4 0.12 0.58 0.12 1.09 0.11 0.44

bias 0 0.07 0 0.02 0.01 0 0 0.00 0 0 0 0.00
RPIQ 2.25 1.29 0.8 1.45 1.63 1.42 1.27 1.44 2.82 1.59 1.54 1.98
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Table A0. Cont.

Methods A B C

Field Metrics SSR
35-1 St-15 KG-18-19 Mean SSR

35-1 St-15 KG-18-19 Mean SSR
35-1 St-15 KG-18-19 Mean

Ca

R2 0.42 0.47 0.54 0.48 0.32 0.5 0.55 0.46 0.72 0.64 0.65 0.67
RMSE 738.46 875.83 838.52 817.60 776.29 857.52 832.42 822.08 483.76 705.47 764.21 651.15

bias −27.78 −21.28 −7.15 −18.74 11.06 −35.92 −7.16 −10.67 −0.97 −8.79 5.83 −1.31
RPIQ 1.23 1.4 1.67 1.43 0.9 1.21 1.56 1.22 1.77 1.93 2.26 1.99

Cu

R2 0.24 0.45 0.45 0.38 0.06 0.5 0.5 0.35 0.74 0.53 0.56 0.61
RMSE 0.35 1.03 0.1 0.49 0.36 1 0.1 0.49 0.19 0.95 0.09 0.41

bias −0.02 0.04 0 0.01 0 0.08 0 0.03 −0.01 −0.01 0 −0.01
RPIQ 0.87 1.33 1.36 1.19 0.39 1.38 1.61 1.13 2.48 1.7 1.86 2.01

Zn

R2 0.51 0.47 0.56 0.51 0.42 0.41 0.64 0.49 0.72 0.6 0.71 0.68
RMSE 2.59 1.43 0.72 1.58 2.84 1.46 0.65 1.65 1.86 1.23 0.59 1.23

bias −0.09 0.05 0 −0.01 −0.07 0 0 −0.02 −0.02 0.01 −0.01 −0.01
RPIQ 1.02 1.34 1.54 1.30 0.91 1.29 1.98 1.39 1.23 1.73 2.03 1.66

pH

R2 0.32 0.69 0.67 0.56 0.6 0.74 0.77 0.70 0.81 0.77 0.79 0.79
RMSE 0.23 0.6 0.5 0.44 0.21 0.56 0.42 0.40 0.12 0.53 0.4 0.35

bias −0.01 0.01 0 0.00 0.01 −0.03 0 −0.01 0 0 0 0.00
RPIQ 1.18 2.11 2.41 1.90 1.69 2.46 2.91 2.35 3.37 2.45 3.01 2.94
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